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Introduction 1

Introduction

CAMFR (CAvity Modelling FRamework) is a fast, flexible, full-vectorial Maxwell solver,
that is powerful and easy to use. Although it can tackle general electromagnetic problems,
its main focus is the simulation of optical devices, e.g. wavelength-scale structures (like
photonic crystals), lasers (like VCSELs) and light-emitting diodes (like RCLEDs).

As CAMFR is an ongoing active research project, it contains many attractive new al-
gorithms and techniques which are currently not yet found in commercial software, most
notably in the domain of advanced boundary conditions.

Contrary to other, more traditional approaches like FDTD, CAMFR is not based on
spatial discretisation or finite differences, but rather on frequency-domain eigenmode ex-
pansion techniques. Instead of specifying the fields on a discrete set of grid points in space,
the fields are described as a sum of local eigenmodes in each z-invariant layer of the struc-
ture. What this means concretely is that for a large variety of structures, CAMFR can be
orders of magnitude faster than these traditional methods.

CAMFR can calculate:

• the scattering matrix of a structure

• the field inside a structure, for any given excitation

• band diagrams of an infinite periodic structure

• threshold material gain and resonance wavelength of laser modes

• the response to a current source in an arbitrary cavity

• structures containing a semi-infinite repetition of a basic period

This functionality is currently available for two types of geometries:

• 2D Cartesian structures

• 3D cylindrical symmetric structures

The rest of this manual is structured as follows:

• a tutorial introducing the basic concepts of CAMFR

• a chapter containing examples which illustrate other features, like modelling more
complicated optical structures (VCSEls, spontaneous emission, photonic crystals,... )

• a reference guide
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1 Tutorial

To run a simulation with CAMFR, you have to write a Python script describing the structure
to be simulated and the calculations to be performed.

Python (http://www.python.org) is a general-purpose, clean and flexible scripting lan-
guage, that is easily extendible and that really shines at integrating different pieces of
software. Because Python is a full-blown programming language, it is e.g. very easy to
write loops that sweep a certain simulation parameter. It is also trivial to use the CAMFR
output in other Python-enabled applications, like e.g. a visualisation package.

In this tutorial, we will introduce the basic concepts of CAMFR, as well as a minimal
subset of the Python language that is needed to perform simulations. Although a more in-
depth knowledge of Python is not really necessary, it is reassuring to know that CAMFR is
integrated in a powerful programming language, making it possible to perform sophisticated
simulations and postprocessing.
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1.1 Example 1: a simple waveguide example

The examples in this chapter can be found in the directory examples/tutorial in
the main CAMFR directory. If you’re on a Windows system, this directory could by
something like C:\python23\Lib\site-packages\camfr, on a Unix system it is usually
/usr/lib/python2.5/site-packages/camfr.

The first file tutorial1.py introduces some simple waveguide simulations and looks like
this:

#!/usr/bin/env python

####################################################################

#

# Simple waveguide example

#

####################################################################

from camfr import *

set_lambda(1)

set_N(20)

set_polarisation(TE)

# Define materials.

GaAs = Material(3.5)

air = Material(1.0)

# Define waveguide.

slab = Slab(air(2) + GaAs(0.5) + air(2))

slab.calc()

# Print out some waveguide characteristics.

print slab.mode(0).kz()

print slab.mode(1).n_eff()

print slab.mode(2).field(Coord(2.25, 0, 0))

print slab.mode(3).field(Coord(2.25, 0, 0)).E2()

print slab.mode(4).field(Coord(2.25, 0, 0)).E2().real

# Do some interactive plotting.

slab.plot()

The first line #!/usr/bin/env python is an optional Unix incantation to tell the oper-
ating system that it should execute this script with the Python interpreter.
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The next lines illustrate that comments in Python start with #.

The line from camfr import * informs Python that we want to start using the CAMFR
library.

The following lines are pretty self-explanatory:

set_lambda(1)

set_N(20)

set_polarisation(TE)

We set the wavelength to 1 micron, use 20 eigenmodes to expand the field, and deal with
TE polarisation. Next, we define GaAs to be a material with refractive index 3.5 and air
as a material with index 1:

GaAs = Material(3.5)

air = Material(1.0)

We can now define a simple slab waveguide, with a GaAs core of half a micron thick,
and air cladding layers of 2 micron thick.

slab = Slab(air(2) + GaAs(0.5) + air(2))

This structure is implicitly assumed to be sandwiched between two perfect electric con-
ductors (PECs), as indicated in fig. 1:

This figure also indicates the conventions for the coordinate system. The x-axis lies
along the cross-section of the slab waveguide and starts at the bottom wall. The waveguide
is uniform in the y- and z- direction. The eigenmodes of the waveguide propagates along
the z-direction.

Using the command slab.calc(), CAMFR will calculate the properties of the slab,
some of which are then printed out in the following lines of the Python script.

print slab.mode(0).kz() prints out the propagation factor of the fundamental mode
of the slab, while slab.mode(1).n_eff() displays the effective index of the first order
mode.
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print slab.mode(2).field(Coord(2.25, 0, 0)) shows the field of the second order
mode at x=2.25, which is in the center of the core. This field consists of six complex
numbers. E1, E2, Ez are the phasors for the components of the electric field, and H1, H2, Hz
represent the magnetic field. Here, 1 refers to the x-direction and 2 to the y-direction. (For
cylindrical structures, 1 refers to the radial direction and 2 to the angular direction.)

print slab.mode(4).field(Coord(2.25, 0, 0)).E2().real illustrates how we can
extract the real part from a complex number in Python. (real is a built-in Python
attribute of a complex number, and as such requires no extra parentheses.) Similarly, the
imaginary component can be extracted with imag.

Finally, slab.plot() shows a widget which can be used to interactively explore the
properties of the waveguide modes, field profiles and effective index distribution. Note that
you can zoom in these plots by drawing a rectangle with the left mouse button pressed.
You can also bring up the effective index distribution in the complex plane and click on the
modes in that plane to plot their field profiles.

The Python script can be executed in a number of ways. You can type python

tutorial1.py, or under Unix you can just suffice by typing tutorial1.py, provided the
first line of your script contains #!/usr/bin/env python and the script file’s executable
bit is set (with chmod +x tutorial1.py). (Note: all of these command need to be typed
in on the system prompt, not on the Python prompt.)

Regardless of the invocation method, the output that will be printed out will look some-
thing like this:

CAMFR 1.3 - Copyright (C) 1998-2007 Peter Bienstman - Ghent University.

(21.3499038707+0j)

(3.07668661368+0j)

E1=(0,0), E2=(-16.0633,0), Ez=(0,0)

H1=(0.105632,0), H2=(0,0), Hz=(0,0.0966439)

(24.2902148016+0j)

0.649002451002

There is also a third way of starting the script, which is python -i tutorial1.py. This
will print out the same output, but will afterwards present you with an interactive Python
session. After Python’s >>> prompt, you can type any Python command, like e.g. print

slab.mode(10).kz(). This allows you to rapidly inspect any simulation results, without
the need to adapt your script file. This Matlab-like interactivity can be very productive,
because it can give you rapid feedback on your simulation results.

If you are on a Windows machine and use the Active Python distribution from
http://www.activestate.com as your Python environment, you will have access to
an interactive Python session semi-automatically through the PythonWin environment.
Consult the Active Python documentation for more information.
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1.2 Example 2: a simple stack example

The next example shows how to calculate the scattering matrix of a stack of waveguides
and how to loop over a simulation parameter:

#!/usr/bin/env python

####################################################################

#

# Simple stack example

#

####################################################################

from camfr import *

set_lambda(1)

set_N(20)

set_polarisation(TE)

# Define materials.

GaAs = Material(3.5)

air = Material(1.0)

# Define slabs.

slab = Slab(air(2) + GaAs(0.5) + air(2))

space = Slab(air(4.5))

# Print the reflectivity for different lengths.

for L in arange(0.005, 0.100, 0.005):

stack = Stack(space(0) + slab(L) + space(0))

stack.calc()

print L, abs(stack.R12(0,0))

Apart from the same slab waveguide as in the previous example, we also define a second
slab called space, a uniform air layer.

Let us skip ahead to this line:

stack = Stack(space(0) + slab(L) + space(0))
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This line defines a stack consisting of a sequence of waveguide sections, as shown in fig.
2:

Because of the way eigenmode expansion works, the incidence and exit waveguides
(space in this case) are infinitely long. The thickness of the sections space(0) just serve
to indicate the location of the reference input and output planes.

The command stack.calc() is used to calculate the scattering matrix of the stack
named stack. Fig. 2 indicates the meaning of the four submatrices of this scattering matrix.
There are two reflection and transmission matrices, for incidence from either medium 1 or
medium 2.

More specifically, if you have e.g. an incident field from the left in medium 1 , described
by a column vector f of expansion coefficients, the reflected field will be described by the
product R12 x f.

So, stack.R12(0,0) is the reflection coefficient of the fundamental mode of the incident
waveguide back to itself.

Also illustrated in this example is how to create loops in Python, e.g. to vary the length
in central waveguide section from 5 to 100 nm (excluding 100 nm) in steps of 5 nm:

for L in arange(0.005, 0.100, 0.005):

stack = Stack(space(0) + slab(L) + space(0))

stack.calc()

print L, abs(stack.R12(0,0))

The function arange is not part of the core Python language, but rather of the extension
package NumPy.

Very important to notice is that Python uses indentation to distinguish statements which
form part of the loop and which don’t. So, writing

for L in arange(0.005, 0.100, 0.005):

stack = Stack(space(0) + slab(L) + space(0))

stack.calc()

print L, abs(stack.R12(0,0))
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would only print out the results for the last value of L, which incidentally is 0.095. It
does not really matter if you use tabs or spaces to indent, as long as you are consistent.

It is of course trivial to create nested loops:

for x in arange(0.000, 0.100, 0.010):

for y in arange(0.000, 0.200, 0.020):

do_something()
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1.3 Example 3: another stack example

In the next example, we will introduce PML boundary conditions and show how to work
with files.

#!/usr/bin/env python

####################################################################

#

# Another stack example

#

####################################################################

from camfr import *

# Set constants.

set_lambda(1.5)

set_N(20)

set_polarisation(TE)

# Define materials.

GaAs = Material(3.5)

air = Material(1.0)

# Define waveguide sections.

set_lower_PML(-0.1)

set_upper_PML(-0.1)

normal = Slab(air(2.0) + GaAs(0.5) + air(2.0))

thick = Slab(air(1.9) + GaAs(0.7) + air(1.9))

# Calculate reflection of the fundamental mode for different

# lengths of the central thick section.

outfile = file("tutorial3.out",’w’)

for L in arange(0.000, 0.500, 0.010):

stack = Stack(normal(0) + thick(L) + normal(0))

stack.calc()

print >> outfile, L, abs(stack.R12(0,0))

outfile.close()
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This script is very similar in structure to the previous one, and describes a waveguide
with a core thickness of 0.5 micron, which widens to 0.7 um in a central section with length
L (fig. 3).

set_lower_PML(-0.1) gives all the lower claddings in subsequently defined slabs an
imaginary component to its thickness of -0.1j. Similarly for set_upper_PML. lower refers
to the layer at x=0, which is the first term in the expression used to define the slab.

This imaginary cladding thicknesses implement the so-called perfectly matched layer
(PML) boundary conditions. PML can absorb radiation travelling toward the walls, without
introducing any additional parasitic reflections, regardless of wavelength, incidence angle or
polarisation of the incident light. The larger the imaginary component (in absolute value)
of the thickness, the stronger the absorption.

The presence of advanced boundary conditions like PML is a very powerful feature of
CAMFR. Without it, the PEC walls would reflect all the incoming radiation and send it
back the structure under study, where it can disturb the simulation results.

The current example also illustrates how to write output to a file, rather than to the
screen:

outfile = file("myfile",’w’) # ’w’ indicates writing.

print >> outfile, "Hello world"

outfile.close()
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1.4 Example 4: a circular stack

Not only can CAMFR deal with 2D Cartesian structures, it can also handle circular waveg-
uides with an arbitrary number of index steps in the radial direction.

This is illustrated in the following Python file:

#!/usr/bin/env python

####################################################################

#

# A circular stack

#

####################################################################

from camfr import *

set_lambda(1)

set_N(20)

set_circ_order(0)

set_polarisation(TE)

# Define materials.

GaAs = Material(3.5)

air = Material(1.0)

# Define uniform circular waveguide.

set_circ_PML(-0.1)

space = Circ(air(1))

# Calculate the reflectivity for different widths

# of the central core.

for r in arange(0.100, 0.500, 0.050):

circ = Circ(GaAs(r) + air(1 - r))

stack = Stack(space(0) + circ(0.5) + space(0))

stack.calc()

print r, abs(stack.R12(0,0))

free_tmps()
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The structure defined by this script is shown in fig. 4.

A new command specifically related to circular structures is set_circ_order(0), which
tells CAMFR to look for eigenmodes with Bessel order 0. For this Bessel order, we can
have both TE and TM modes, and in this case we choose for TE modes by setting set_

polarisation(TE). For Bessel orders other than 0, the modes are hybrid TE/TM, and any
use of set_polarisation will be ignored.

Circular waveguides are defined in pretty much the same way as slab waveguides, except
that the argument to Circ describes the structure from r=0 to the wall, rather than from wall
to wall as was the case with slabs. PML in circular structures is set by using set_circ_PML,
which adds a complex thickness to the cladding layer.

Another new command that is introduced in this example is free_temps(), which is
called at the end of each loop iteration to free all the data structures (eigenmodes, scattering
matrices, ...) that were allocated so far. The default mode of operation in CAMFR is to
keep this data around, so that it might be reused in future calculations. However, in this
particular example, this would only waste a lot of memory, since every iteration through the
loop creates a completely new structure with a different core width, whose results cannot
reused in subsequent calculations.

This is different from example2.py, where we did not create new waveguides, but only
varied the length of the waveguide sections. In this case, it made sense to keep the previous
calculation results around, because eigenmode expansion can easily update the scattering
matrices of a structure if only the length of the individual waveguide sections changes.

For a more complex example dealing with Omniguide fibres, see omniguide.py in the
examples/contrib directory.
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1.5 Example 5: field profiles in a stack

In this example, we will excite the stack from example 2 with a certain incident field
distribution and calculate the resulting field in the stack.

#!/usr/bin/env python

####################################################################

#

# Calculate field profiles in a stack.

#

####################################################################

from camfr import *

set_lambda(1)

set_N(20)

set_polarisation(TE)

# Define materials.

GaAs = Material(3.5)

air = Material(1.0)

# Define stack.

set_lower_PML(-0.1)

set_upper_PML(-0.1)

slab = Slab(air(2) + GaAs(.5) + air(2))

space = Slab(air(4.5))

stack = Stack(space(0) + slab(0.5) + space(0))

# Set incident field and calculate stack.

inc = zeros(N())

inc[0] = 1

stack.set_inc_field(inc)

stack.calc()

# Save the field to a file.

# Do some interactive plotting.

stack.plot()

The new code is in the following lines:
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inc = zeros(N())

inc[0] = 1

stack.set_inc_field(inc)

These commands prepare a column vector named inc describing the incident field. This
vector consists of N elements, one for each eigenmode. Initially, all elements are zero, but
afterwards, we set the element corresponding to the fundamental mode equal to one. This
vector is then used as the incident field.

stack.plot() brings up a widget which can show and animate the field profile in a stack,
write the pictures to files, ... . Once again, you can zoom in these widgets by drawing a
rectangle with the left mouse button pressed.

If you want to do some post-processing of the field data yourself, you can access it by
commands like stack.field(Coord(x,0,z)).
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1.6 Example 6: exploiting symmetry

In this example, we will simulate the same structure as in the previous example, but this
time we will exploit the symmetry in order to speed up the calculation.

#!/usr/bin/env python

####################################################################

#

# Calculate field profiles in a stack, but exploit symmetry

#

####################################################################

from camfr import *

set_lambda(1)

set_N(10)

set_polarisation(TE)

# Define materials.

GaAs = Material(3.5)

air = Material(1.0)

# Define stack.

set_upper_PML(-0.1)

set_lower_wall(slab_H_wall)

slab = Slab(GaAs(.25) + air(2))

space = Slab(air(2.25))

stack = Stack(space(0) + slab(0.5) + space(0))

# Set incident field and calculate stack.

inc = zeros(N())

inc[0] = 1

stack.set_inc_field(inc)
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# Save the field to a file.

outfile = file("tutorial6.out",’w’)

for x in arange(0.000, 2.250, 0.100):

for z in arange(0.000, 0.500, 0.010):

print >> outfile, abs(stack.field(Coord(x,0,z)).E2()),

print >> outfile

outfile.close()

The structure we are studying is symmetric along the horizontal axis. If we want to excite
it with a symmetric excitation as well, we can speed up the simulation by introducing a
symmetry wall and only calculating half of the structure (fig. 5).

For excitation with the fundamental TE mode, we need to introduce a magnetic wall at
the center. This is done with the command set_lower_wall(slab_H_wall) before defining
any slabs. lower refers to the bottom side of the slabs (x=0). Obviously, there exists a
command set_upper_wall(...) as well. It is also possible to specify a slab_E_wall as
boundary condition, but this not necessary as it is the default.

Because the structure now has half the size as the original structure, we can suffice with
only half as many modes, which typically buys us a factor eight in computation time.

Another thing to pay attention to is that in this case there is only PML at the upper
wall, since the lower wall is effectively the inside of the structure we want to model, so we
don’t want any absorbing boundary conditions there.

This time, instead of interactively plotting the field, we choose to write it to a file for
further analysis. When printing the field, note the trailing command at the end of the print
statement. This will prevent the print statement from going to the next line. After we
have iterated over all z-values for a given x-value, we force a line break with the command
print >> outfile. In this way, the field data is nicely arranged in a matrix format.
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1.7 Example 7: using functions to define complex structures

In this final example we will illustrate how we can simplify the definition of non-trivial
structures by using Python functions, rather than explicitly specifying the refractive index
profile.

The following code shows how we automatically generate a staircase approximation of a
parabolic refractive index profile.

#!/usr/bin/env python

####################################################################

#

# Parabolic refractive index profile.

#

####################################################################

from camfr import *

set_lambda(1)

set_N(20)

set_polarisation(TE)

w = 5.0 # width of waveguide

set_upper_PML(-0.1)

set_lower_PML(-0.1)

# Define parabolic refractive index profile.

def index(x):

max_n = 3.5 # max refractive index

a = 0.1 # slope

n = max_n - a * pow(w / 2.0 - x, 2)

if n < 1:

return 1

else:

return n
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# Construct a staircase approximation.

expr = Expression()

materials = []

steps = 10

for i in range(steps):

x = i * w / steps

m = Material(index(x + 0.5 * w / steps))

materials.append(m)

d = w / steps

expr.add(m(d))

slab = Slab(expr)

# Compare continuous and staircase profile.

outfile = file("tutorial7.out",’w’)

steps2 = 100

for i in range(steps2):

x = i * w / steps2

print >> outfile, x, index(x), slab.n(Coord(x, 0, 0)).real

outfile.close()

The lines after def index(x): define a function which takes as argument the x coordinate
and returns the refractive index at this position in a certain parabolic refractive index profile.
This code also illustrates the use of conditionals, and stresses once again the importance of
indentation in Python.

The next block of code creates the expression expr, which will describe the staircase
approximation of the index profile. The width of the waveguide will be divided in steeps

piecewise constant parts.

First, an empty expression is created: expr = Expression(). This expression is gradu-
ally filled in a loop while i runs from 0 to steps-1.

A material m is created with the refractive index from the middle of the current step of
the index profile. Finally, a term is added to the expression which describes the current
step, consisting of material m with thickness d: expr.add(m(d)).

At the end of the loop, this expression is used to define a slab, which can be used in
subsequent calculations : slab = Slab(expr).

Very important to notice is that we keep hold of the materials m we create in the
loop, by first defining an empty list materials = [], to which we add each material:
materials.append(m).

The reason for this lies in Python’s garbage collection. Without the list materials

to hold on to the materials, Python will see m as just a temporary variable, which it will
deallocate and garbage collect after the loop has finished. Since we still need these materials
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in the subsequent calculations, we have to tell Python not to free them by storing them in
a list at the top level in the source code.
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2 Modelling optical devices

In this chapter, we will build upon the basic concepts introduced in the tutorial chapter to
model more complicated optical devices. More specifically, we will see how to calculate band
diagrams for infinite periodic stacks, how to locate laser modes in arbitrary cavities and
how to calculate the response to a current source inside a cavity. We will also explain how
to model purely 1D planar structures, how to model semi-infinite stacks, how to input more
complicated structures using geometric primitives, and how to use more complex excitations
for slabs.

All of this functionality is available for both geometries (2D Cartesian, cylindrical),
although the examples given are only for a single geometry.

2.1 Modelling photonic crystal devices

Let us model the photonic crystal splitter from fig 2.1:

This device consists of a 2D periodic arrangement of GaAs rods in air, which is impene-
trable for certain wavelengths. By omitting some rods, we can create channels which guide
the light. In the example of the splitter, light enters the structure from the left, is guided
by the air channel in the photonic crystal, and finally split into two equal parts.

Although we can already analyse such a structure with the knowledge we have from the
tutorial, there are a number of techniques that can be applied to speed up the simulation.
This is illustrated in the following code, which can be found in examples/other:
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#! /usr/bin/env python

###################################################################

#

# 90 deg 3dB splitter in rectangular lattice of rectangular

# GaAs rods in air

#

###################################################################

from camfr import *

set_polarisation(TE)

set_lambda(1.5)

set_N(50)

# Set geometry parameters

GaAs = Material(3.4)

air = Material(1.0)

a = .600 # period

r = .150/2.0 # rod radius

set_lower_wall(slab_H_wall)

cl = 0 # air cladding

periods = 3 # periods above outer waveguide

sections = 1 # intermediate 90 deg sections

# Define slabs.

no_rods = Slab(air(a-r+(sections+1+periods)*a+cl))

# Central waveguide.

cen = Slab( air(a-r) \

+ (sections+1+periods)*(GaAs(2*r) + air(a-2*r)) \

+ air(cl) )
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# Vertical section.

ver = Slab( air(a-r + (sections+1)*a) \

+ periods*(GaAs(2*r) + air(a-2*r) ) \

+ air(cl) )

# Outer arms.

arm = Slab( GaAs(r) + air(a-2*r) \

+ sections*(GaAs(2*r) + air(a-2*r)) \

+ air(a) \

+ periods*(GaAs(2*r) + air(a-2*r)) \

+ air(cl) )

# Find lowest order waveguide mode.

wg = BlochStack(cen(2*r) + no_rods(a-2*r))

wg.calc()

print wg

guided = 0

for i in range(2*N()):

if (abs(wg.mode(i).kz().imag) < abs(wg.mode(guided).kz().imag)):

if wg.mode(i).kz().real > 0:

guided = i

# Calculate splitter.

splitter = Stack( 5*(cen(2*r) + no_rods(a-2*r)) \

+ ver(2*r) + no_rods(a-2*r) \

+ 5*(arm(2*r) + no_rods(a-2*r)) )

splitter.set_inc_field(wg.mode(guided).fw_field())

splitter.calc()

print "R", splitter.R12(0,0)
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# Calculate field.

outfile = open("splitter.out", ’w’)

for x in arange(0.000, no_rods.width() - cl - a, a/20.):

for z in arange(0.000, splitter.length(), a/20.):

print >> outfile, abs(splitter.field(Coord(x, 0, z)).E2()),

print >> outfile

outfile.close()

Note in this example the use of \ to split up long lines. This is necessary because of the
way Python relies on whitespace.

An important note is that CAMFR always uses the polarisation definitions as they are
conventional in waveguide theory, i.e. TE polarisation corresponds here to the electric field
along the rods, out of the plane of the picture. Unfortunately in photonic crystal literature
this is called TM polarisation.

Now, we need to find a suitable excitation in order to calculate the field profiles in this
structure. In other methods like FDTD, we would do this by placing a current source in a
very long stretch of the photonic crystal waveguide in the left of fig. 2.1. After this long
stretch of waveguide, an equilibrium field distribution with only the fundamental mode of
the waveguide would appear, which can be used to excite the splitter.

This is rather slow, since we need a long stretch of waveguide to obtain this equilibrium
field distribution. However, because of the frequency domain nature of CAMFR, we can
directly excite the structure with a quasi-equilibrium field distribution. In order to do that,
we first perform a sub-calculation which gives us the Bloch modes of the photonic crystal
waveguide without the splitter:

wg = BlochStack(cen(2*r) + no_rods(a-2*r))

wg.calc()

Here, we define wg to be an infinite repetition of the sections cen and no_rods. After a
call to calc, we can examine the properties of this waveguide and its Bloch modes just like
any other waveguide mode (with calls to kz(), field(), ...). The only difference is that
a BlochStack has 2N modes rather than N, because it contains both forward and backward
Bloch modes.

(Note that if we wanted to calculate the full band diagram of this periodic structure in
the direction of z, we simply have to place this calculation inside a loop over all frequencies of
interest, and look at the BlochModes where the imaginary part of the propagation constant
is sufficiently small.)

After we inspect the propagation factors to determine to locate the fundamental mode,
we excite the splitter with the forward field of this mode:

splitter.set_inc_field(wg.mode(guided).fw_field())

This gives us a quasi-equilibrium field distribution almost immediately, and we can very
efficiently calculate the properties of the splitter using only a small computational domain.
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2.2 Locating laser modes

The following code illustrates how to use CAMFR to find laser modes in a cavity, in this
case a cylindrical oxidised VCSEL (vertical-cavity surface-emitting laser):

#!/usr/bin/env python

####################################################################

#

# Finds a laser mode in a VCSEL (from COST 268 modelling exercise.)

#

####################################################################

from camfr import *

set_lambda(.980)

set_N(100)

set_circ_order(1)

# Define materials.

GaAs_m = Material(3.53)

AlGaAs_m = Material(3.08)

AlAs_m = Material(2.95)

AlOx_m = Material(1.60)

air_m = Material(1.00)

gain_m = Material(3.53)

loss_m = Material(3.53 - 0.01j)

set_gain_material(gain_m)

# Define geometry parameters

set_circ_PML(-0.1)

r = 4.0

d_cladding = 4.0

d_GaAs = .06949

d_AlGaAs = .07963
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# Define cross sections

GaAs = Circ( GaAs_m(r+d_cladding))

AlGaAs = Circ(AlGaAs_m(r+d_cladding))

air = Circ( air_m(r+d_cladding))

ox = Circ(AlAs_m(r) + AlOx_m(d_cladding))

QW = Circ(gain_m(r) + loss_m(d_cladding))

# Set oxide window position.

position = 4 # 1: node, 5: antinode

x = (5. - position) * d_AlGaAs/5.

# Define top half of cavity.

top = Stack( (GaAs(0) + AlGaAs(x)) + ox(.2*d_AlGaAs) \

+ (AlGaAs(.8*d_AlGaAs - x) + GaAs(d_GaAs) \

+ 24*(AlGaAs(d_AlGaAs) + GaAs(d_GaAs)) + air(0)) )

# Define bottom half of cavity.

bottom = Stack(GaAs(.13659) + QW(.00500) \

+ (GaAs(.13659) + 30*(AlGaAs(d_AlGaAs) + GaAs(d_GaAs) + GaAs(0))) )

# Define cavity and find laser mode.

cavity = Cavity(bottom, top)

cavity.find_mode(.980, .981)

First, we need to divide the cavity in an arbitrary location in a top and a bottom part
(the dashed line in fig. 2.2):

We then define two stacks describing these top and bottom part, starting from the dashed
line. Defining the cavity is as simple as writing

cavity = Cavity(bottom, top)



Chapter 2: Modelling optical devices 26

In order to locate a laser mode, we need to vary the wavelength to achieve phase res-
onance and to vary the material gain in the active region to achieve amplitude resonance.
For that, we first had to inform CAMFR which material would provide the gain:

set_gain_material(gain_m)

From the definition of the waveguide QW, we can see that this device provides gain in the
central part of the active region, while there is a small constant loss outside of the oxide
aperture.

Finally, the command cavity.find_mode(.980, .981) will locate a laser mode in the
wavelength range between 980 and 981 nm. Once it has found such a mode, it will print out
its wavelength and threshold material gain. There are a few other arguments that can be
passed to find_mode() to control the search process, but for that we refer to the reference
guide.

A trick worth pointing out is the use of parentheses to group all the transverse uniform
waveguide sections in the definitions of top and bottom. These substacks have diagonal
reflection and transmission matrices and can therefore be calculated more efficiently. By
explicitly grouping these diagonal substacks, CAMFR will recognise them as such, rather
than treating the whole stack as completely non-diagonal.
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2.3 Putting a current source inside a cavity

This section illustrates how we can put a current source inside a cavity. This can be useful
either to calculate the Green’s function of a cavity, or the calculate the modification of
spontaneous emission in resonant-cavity LEDs.

As a first example, we calculate the modification of spontaneous emission of a horizontal
current dipole placed between two parallel metallic plates. This 3D planar open geome-
try is converted to a 3D closed cylindrical geometry by using PMLs (fig 2.3). Since this
configuration can also be calculated analytically, we can easily verify the results.

PMLPML

#! /usr/bin/env python

###################################################################

#

# Calculates modification of spontaneous emission of a dipole

# between two metal plates.

#

###################################################################

from camfr import *

set_N(60)

set_lambda(1)

set_circ_order(1)

set_circ_field_type(cos_type)

# Define waveguide and wall.

set_circ_PML(-0.5)

air_m = Material(1.0)

air = Circ(air_m(10))

air.calc()

wall = E_Wall(air)
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# Calculate change in spontaneous emission rate.

for d in arange(0.01, 3.0, 0.05):

# Define cavities.

half = Stack(air(d/2.) + wall)

half_open = Stack(air(d/2.))

source_pos = Coord(0,0,0)

orientation = Coord(1,0,0)

cav = Cavity(half, half)

cav.set_source(source_pos, orientation)

cav_open = Cavity(half_open, half_open)

cav_open.set_source(source_pos, orientation)

# Analytic formula for spontaneous emission rate.

x = floor(d+0.5)

exact = 3.*x/4./d + pow(x/d,3)/4. - x/16./d/d/d

# Numerical formula as ratio of total emitted powers.

numeric = half. field(Coord(0,0,0)).E1().real \

/ half_open.field(Coord(0,0,0)).E1().real

print d, exact, numeric

This script introduces a couple of new features. First of all set_circ_field_type(),
which is only relevant for these kind of source problems, indicates whether the generated
fields have cos or sin type angular dependence. For calculating scattering matrices, these
are completely decoupled, but for source problems, which one of these field types is excited
is determined by the orientation of the current source.

wall = E_Wall(air) defines a perfectly conducting metal plate with air on the incidence
side. This structure can be used in an expression to describe the horizontal metal walls
surrounding the dipole.

In order to place a source inside a cavity at a given position and with a given vectorial
orientation, we use the following command:

cav.set_source(source_pos, orientation)

From Poynting’s theorem, we can calculate the total power radiated by this dipole from
the real part of the electric field at the dipole itself.

This is much more accurate than explicitly calculating power flows using e.g. the com-
mands stack.inc_S_flux and stack.ext_S_flux to calculate the real power flow at the
incidence and at the exit side of a stack (see reference manual).
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2.4 1D planar structures

The following Python code shows how to model a purely 1D Bragg stack, where all the
layers extend infinitely in the transverse direction.

#!/usr/bin/env python

####################################################################

#

# planar 1D DBR

#

####################################################################

from camfr import *

# Define structure.

set_lambda(1)

GaAs_m = Material(3.5)

AlAs_m = Material(2.9)

GaAs = Planar(GaAs_m)

AlAs = Planar(AlAs_m)

d_GaAs = get_lambda()/4./GaAs_m.n().real

d_AlAs = get_lambda()/4./AlAs_m.n().real

s = Stack(GaAs(0) + 10*(GaAs(d_GaAs) + AlAs(d_AlAs)) + GaAs(0))

# Loop over incidence angles.

for theta in arange(0, 90, 0.5):

GaAs.set_theta(theta * pi / 180.)

print theta,

set_polarisation(TE)

s.calc()

print abs(s.R12(0,0))**2 ,

set_polarisation(TM)

s.calc()

print abs(s.R12(0,0))**2

Planar takes a material as argument to create an infinitely extended planar layer, which
can be used in Stack to create a layered 1D structure.

The stack is calculated for one angle at a time, which can be set in radians using set_

theta on a given material. Note that you should set the wavelength before setting the angle,
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as set_theta effectively sets the transverse part of the wavevector, which is dependent on
the wavelength.

Because only one mode (or plane wave in this case) is needed at any time for a calculation,
the reflection and transmission matrices have only one element.
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2.5 Semi-infinite stacks

Say you wanted to model the incoupling from a dielectric waveguide to a photonic crystal
waveguide (fig. 2.4).

Using other modelling tools, you would have to study a finite structure, i.e. at some
point you would have to terminate the photonic crystal and introduce a photonic crystal/air
interface. Reflections from this interface could travel back to the dielectric waveguide and
disturb the simulation results due to the Fabry-Perot effect.

In CAMFR we can solve this problem by using an InfStack, which allows us to model
the structure of fig. 2.4 where the crystal extends all the way towards infinity in the
propagation direction. In this way, we can study the incoupling problem in isolation of edge
effects from the other side of the crystal.

The following code illustrates how to achieve this:
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#! /usr/bin/env python

###################################################################

#

# A semi-infinite photonic crystal.

#

###################################################################

from camfr import *

set_lambda(1.5)

set_N(50)

# Set geometry parameters

GaAs = Material(3.4)

air = Material(1.0)

a = .600 # period

r = .150/2.0 # rod radius

set_lower_wall(slab_H_wall)

cl = 0 # air cladding

periods = 4 # lateral periods

# Define slabs.

inc_wg = Slab(GaAs(1.5*r) + air(a-2.5*r+periods*a+cl))

no_rods = Slab(air(a-r+periods*a+cl))

cen = Slab( air(a-r) \

+ periods*(GaAs(2*r) + air(a-2*r)) \

+ air(cl) )

# Calculate semi-infinite stack.

s_inf = InfStack(cen(2*r) + no_rods(a-2*r))

s = Stack(inc_wg(a) + s_inf)

s.calc()

print abs(s.R12(0,0))**2
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If you are only interested in the reflection coefficient of the fundamental mode of the
incoupling waveguide, this works fine. However, when using InfStack, the transmission to
the Bloch modes of the semi-infinite stack is not calculated to save time.

If you are interested in these quantanties, you have to make some small modifications:

s_inf = BlochStack(cen(2*r) + no_rods(a-2*r))

s = Stack(inc_wg(a) + s_inf(0))

When you are using a BlochStack instead of an InfStack, all the scattering matrices
are calculated. Moreover, s.T12(0,0) refers to the transmission to the Bloch mode of the
semi-infinite stack, rather than to the transmission to some waveguide mode of one of the
slabs making up the semi-infinite structure, which is usually not of interest.

Note that BlochStack can be used in the beginning of a Stack too.
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2.6 Defining complicated structures

CAMFR has a facility which makes it easier to define complicated non-trivial structures.
Rather than manually specifying the geometry slice by slice, we can define a 2D structure
in terms of higher level geometric shapes, like circles, triangles or rectangles. This definition
can then be automatically discretised and converted to an expression which can be used to
initialise a stack.

To illustrate this, we model the structure from Fig. 2.5.

#!/usr/bin/env python

####################################################################

#

# Illustrates how to define complicated structures using Geometry.

#

####################################################################

from camfr import *

set_lambda(1)

set_N(40)

air = Material(1)

mat = Material(3)

g = Geometry(air)

g += Rectangle(Point(0.0,-0.5), Point(2.0, 0.5), mat)

g += Triangle (Point(2.0, 0.5), Point(2.0,-0.5), Point(3.0, 0.0), mat)

g += Circle (Point(4.5, 0.0), 0.5, mat)
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set_lower_PML(-0.1)

set_upper_PML(-0.1)

prop0, prop1, d_prop = 0.0, 5.0, 0.50

trans0, trans1, d_trans = -2.5, 2.5, 0.01

exp = g.to_expression(prop0, prop1, d_prop,

trans0, trans1, d_trans)

s = Stack(exp)

s.calc()

print s.R12(0,0)

trans

d_prop

prop

The command g = Geometry(air) creates a Geometry object with air as background ma-
terial. We can subsequently add shapes to this object, e.g. g += Rectangle(Point(0.0,-

0.5), Point(2.0, 0.5), mat) adds a rectangle consisting of material mat with given lower
left and top right vertices. Note that the first coordinate refers the propagation direction
(horizontal in the case of Fig. 2.5).

Other shapes we can add are Circle, Triangle or Square. If two shapes overlap, the
shape that was added last takes precedence.

Finally, we can convert the geometry object to an expression which can be used to create
a stack. The arguments to this to_expression function are the range and precision in both
the propagation and transverse direction (see Fig 2.5).

The increments d_prop and d_trans deserve some additional explanation, because they
don’t correspond to a uniform rectangular grid. The way the discretisation in performed is
as follows. First, the structure is split up into a number of slices in the propagation direction,
each d_prop long. Then, subsequent slices are combined if the material discontinuities in the
transverse direction are no more than d_trans apart.. This creates some kind of dynamic
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resolution, because in regions where the shapes vary slower, we will have fewer (but thicker)
slices. Also, it makes sure that subsequent identical slices are always combined into one
slab. All of this makes for a more efficient discretisation than a traditional uniform grid.

Finally, we want to point out that it’s quite easy for the user to add custom shapes by
defining a Python object which overloads intersection_at_x. See camfr/geometry.py

for more details.
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2.7 General excitations for slabs

So far, we’ve mostly excited the structure with a single mode, often the fundamental one.
However, by taking the right linear combination of modes, we can approximate any arbitrary
incident field shape, like a gaussian or a plane wave.

To make this easier for the case of cartesian waveguides, CAMFR provides a number
of variants to Stack.set_incident_field, which are illustrated in the following piece of
code:

#! /usr/bin/env python

###################################################################

#

# Illustrates different excitations for cartesian stacks.

#

###################################################################

from camfr import *

set_N(50)

set_lambda(1.55)

GaAs = Material(3.5)

air = Material(1.0)

set_lower_PML(-0.1)

set_upper_PML(-0.1)

slab = Slab(air(2)+ GaAs(1)+ air(2))

s = Stack(slab(1))

eps = 1e-3 # Precision for calculating overlap integrals.

# General excitation using a Python function.

A = 1.0

x0 = slab.width()/2.

sigma = 0.5

def f(x):

return A*exp(-0.5*((x-x0)/sigma)**2)

s.set_inc_field_function(f, eps)
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# Faster variant using a built-in Gaussian excitation.

s.set_inc_field_gaussian(A, sigma, x0, eps)

# Plane wave with amplitude A and angle theta (radians).

A = 1.0

theta = 0.0

s.set_inc_field_plane_wave(A, theta, eps)

First, we define a Python function f, which describes a Gaussian. This field profile is
then used as an excitation by calling s.set_inc_field_function(f, eps), where eps is
the precision with which the overlap integrals are calculated. f describes the Ey field in the
case of TE polarisation and the Hy field for TM.

By using Python’s lambda expressions, this code could also have been written as

s.set_inc_field_function(lambda x : exp(-0.5*((x-2.5)/0.5)**2), eps)

This is slightly faster, because Python doesn’t have to reference the global variables A,
x0 and sigma.

For even greater speed, there exists a predefined Gaussian excitation:

s.set_inc_field_gaussian(A, sigma, x0, eps)

Finally, there is also a predefined excitation for a plane wave with amplitude A making
an angle theta (in radians) with the propagation direction:

s.set_inc_field_plane_wave(A, theta, eps)

The accuracy which can be achieved to represent an arbitrary field is of course dependent
on the number of modes used. Similarly, Gibbs phenomena can occur when modelling
discontinuous functions, just like e.g. in Fourier analysis.
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2.8 Working with dispersive materials

Since CAMFR is a frequency domain method, working with dispersive materials is in a
sense trivial: just do a different simulation for each wavelength with adjusted material
parameters.

There are however a few convenience functions to help you work with materials whose
refractive index is specified in an external file. A popular format among material scientists
is a text file consisting of three columns: the wavelength in nm, the real part of the index,
the imaginary part of the index where a positive value means loss. The following code
shows how to use such a file, automatically adapting it to the CAMFR conventions (i.e.
wavelength in micron and loss corresponding to a negative imaginary index):

SiO2_factory = Dispersive_Material_Factory(’SiO2.txt’)

for wavelength in arange(1,2,0.1):

set_lambda(wavelength)

m = SiO2_factory()

print m()

This assumes that a file SiO2.txt is present in your current location. Note how you first
need to set the wavelength, and then let the factory object create a new material object for
you to use in the rest of your calculations. Changing the wavelength after the structure is
created will NOT change the refractive index.

In case your refractive index data is tabulated in a different way, have a look
at material.py in the CAMFR source code at the implementation of Dispersive_

Material_Factory to see how to adapt it.

Sometimes, the refractive index is given by a formula. In this case, you can write your
own factory object like this:

class ZnS_Factory:

def __call__(self):

eps = 5.164 + 0.1208 / (get_lambda().real **2 - 0.27055**2)

return Material(sqrt(eps))
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2.9 Modelling light emission in planar LEDs

There is an extra set of functions written on top of CAMFR which allows you to study
spontaneous emission and light extraction in planar stratified resonant cavity light emitting
diodes. The sponteneous emission is modelled as a dipole source with a certain orientation
which is then expanded in plane waves.

These functions can be imported by from RCLED import *. An example of using this
module is given by the following code (available as OLED.py in the examples/other direc-
tory):

#!/usr/bin/env python

####################################################################

#

# Extraction efficiency in an organic LED

#

####################################################################

from RCLED import *

# Set parameters.

set_lambda(0.565)

# Create materials.

Al = Material(1.031-6.861j)

Alq3 = Material(1.655)

NPD = Material(1.807)

ITO = Material(1.806-0.012j)

glass = Material(1.528)

air = Material(1)
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# Define layer structure.

top = Uniform(Alq3, 0.050) + \

Uniform(Al, 0.150) + \

Uniform(air, 0.000)

bot = Uniform(Alq3, 0.010) + \

Uniform(NPD, 0.045) + \

Uniform(ITO, 0.050) + \

Uniform(glass, 0.000)

sub = Uniform(glass, 0.000) + \

Uniform(air, 0.000)

ref = Uniform(10)

cav = RCLED(top, bot, sub, ref)

# Calculate.

cav.calc()

cav.radiation_profile(horizontal)

This defines a structure where the sequence of layers from top to bottom is air, 150 nm
Al, 60 nm Alq3 with the dipole 50 nm from the Al, 45 nm NPD, 50 nm ITO, an optically
thick glass substrate and finally air below.

Just as in other cavity calculations, the top and bot stacks are defined from the inside
out, i.e. from the location of the emitter (in this case the Alq3 layer) to the outside world.

Uniform is a convenience function of the RCLED module, which relieves the user of having
to create the Planar objects (See Section 2.4 [1D planar structures], page 29).

The distinction between the bot and sub stacks is needed because the substrate is
considered to be optically thick, in the sense that reflections from the substrate-air interface
do not contribute to the microcavity effect. In this way, it is also possible to separately
calculate how much light is coupled into the glass substrate and how much is coupled into
the air, which is sometimes useful information. Note that in order to calculate the extraction
to air, the correct Fresnel coefficients for the substrate-air interface are taken into account.

The ref stack also deserves additional explanation. For numerical reasons, the emission
is actually taking place in a zero-thickness reference layer which in this example is set to
have an index of 10. The index of the reference layer is particularly important when the
dipole emits close to a metal layer and you want to model the coupling to surface plasmons
accurately. In this case, you might want to experiment with the reference index to make
sure it is high enough.

The cav.calc() command prints out the following summary of where the light goes for
different dipole orientations:



Chapter 2: Modelling optical devices 42

Source orientation: vertical (weight=1)

Emitted power : 2.393

Extraction efficiency to substrate : 0.094

Extraction efficiency to bottom outside world : 0.009

Source orientation: horizontal (weight=2)

Emitted power : 0.909

Extraction efficiency to substrate : 0.758

Extraction efficiency to bottom outside world : 0.312

Source orientation: average

Emitted power : 1.404

Extraction efficiency to substrate : 0.380

Extraction efficiency to bottom outside world : 0.139

The vertical dipole is oriented perpendicular to the layer interfaces, and the horizontal
one has random azimuth in the plane of the layers. Also note that the convention we adopt
here is that the useful emission is in the bottom direction. If your device is actually top
emitting, you have to invert the layer stack.

If you want to do some post-processing on these numbers, or plug them in an optimisation
routine, the function cav.calc() actually returns a data structure which can be used to
access these numbers. E.g., the following code will print out the same sequence of nine
numbers as above:

res=cav.calc()

print res[vertical].P_source

print res[vertical].eta_sub

print res[vertical].eta_out

print res[horizontal].P_source

print res[horizontal].eta_sub

print res[horizontal].eta_out

print res.P_source

print res.eta_sub

print res.eta_out

If you are only interested in e.g. the horizontal dipole, you can specify this in the code
as follows: cav.calc(sources=[horizontal]). (By default, the following calculation is
performed: calc(sources = [vertical,horizontal], weights = [1,2], indicating that
the horizontal dipole needs to be counted twice to get the correct average over source
orientation.)

Finally, the command cav.radiation_profile(horizontal) will plot the TE and the
TM radiation profile of a horizontal dipole. To look at the radiation profile of a vertical
dipole, simply replace horizontal by vertical.

To do your own post-processing, the function returns the following values:

theta, P_TE, P_TM = cav.radiation_profile(horizontal)
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By default, the radiation_profile command plots the radiation profile in the bottom
output medium, in the case of our example air. To look at the field in other locations,
there is an optional function argument location, which can be any of the following strings:
’source_top’ or ’source_bot’ (to look at the upward and downward radition profile at
the dipole location), ’top’ (in the top output medium, in this case above the metal), ’sub’
(in the substrate, in this case glass) and ’out’ (the default value). Note that the angles
always refer to angles in the particular layer indicated by the location parameter, e.g. for
’sub’ the angles are angles in the glass substrate.

The values which are plotted by the function are densities per unit solid angle, i.e.
the total power is given by the integral of the P values times an infinitesimal solid angle.
For densities per other units, use the following optional argument: density=’per_kt’ or
density=’per_kx_ky’.

To turn off the interactive plotting (e.g. for use in batch calculations) use the optional
argument show = False. To write the figures to files, specify the base filename by the
optional argument filename=’my_file_name’, which will create my_file_name_TE.png

and my_file_name_TM.png.
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2.10 Modelling light emission in LEDs with gratings

The presence of a grating (or a photonic crystal if you prefer), can have a big influence on
optical outcoupling. Therefore, CAMFR also contains a library GARCLED for modelling these
kinds of grating-assisted resonant-cavity LEDs. The gratings can be placed at the interface
between the cavity and the substrate, and/or at the interface between the substrate and
the air. Multiple incoherent reflections in the optically thick substrate can also be taken
into account.

The following is a simple example:

#!/usr/bin/env python

####################################################################

#

# Extraction efficiency in an organic LED with gratings

#

####################################################################

from GARCLED import *

# Set parameters.

set_lambda(0.565)

orders = 2

set_fourier_orders(orders,orders)

L = 0.400

set_period(L, L)

# Create materials.

Al = Material(1.031-6.861j)

Alq3 = Material(1.655)

NPD = Material(1.807)

SiO2 = Material(1.48)

SiN = Material(1.95)

ITO = Material(1.806-0.012j)

glass = Material(1.528)

air = Material(1)
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# Define layer structure.

top = Uniform(Alq3, 0.050) + \

Uniform(Al, 0.150) + \

Uniform(air, 0.000)

bot = Uniform(Alq3, 0.010) + \

Uniform(NPD, 0.045) + \

Uniform(ITO, 0.050) + \

SquareGrating(L/4, SiO2, SiN, "1", 0.100) + \

Uniform(glass, 0.000)

sub = Uniform(glass, 0.000) + \

Uniform(air, 0.000)

ref = Uniform(3) # Don’t choose too high: otherwise takes too long

cav = RCLED(top, bot, sub, ref)

# Calculate.

cav.calc(sources=[vertical, horizontal_x], weights=[1, 2],

steps=30, symmetric=True)

cav.radiation_profile(horizontal_x, steps=30)

The main structure of the code should look very similar as compared to the planar case
from the previous section.

The command set_period(Lx,Ly) allows you to set the period in the x and y transverse
directions. set_fourier_orders(Nx,Ny) sets the number of diffraction orders that are
taken into account when simulating the grating with the rigorous coupled wave analysis
model (RCWA). This number has a big influence on the calculation time.

Also for reasons of calculation time, the index of the reference material should not be
excessively high (but at least as high as the index of the material where the emission takes
place).

SquareGrating(D, square_m, surround_m, pos, thickness) is a convenience func-
tion to create a square grating of squares of material square_m in a background material
surround_m. The side of the squares has length D and the period of the grating has already
been set by set_period(Lx,Ly). The thickness or height of the grating layer is given by the
thickness parameter. The position of the emitting dipole with respect the grating pattern
has an influence on the radiation profile. With the pos argument you can specify three
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different high-symmetry positions ’1’, ’2’ and ’3’. These are illustrated in the following
figure.

1

2 3

square

surround

For this particular example, the extraction efficiency for the horizontal_x and
horizontal_y dipoles will be the same due to symmetry. Therefore, we only calculate
the horizontal_x dipole, but give it a weight coefficient of two, so that the average over
dipole orientation gives the correct result.

The steps parameter determines in how many equidistant steps the basic integration
interval along one k-axis is subdivided. Together with set_fourier_orders(Nx,Ny), these
are the main parameters that determine accuracy and calculation time.

symmetric=True tells the software that the grating together with the dipole orientation
possess mirror symmetry along the x and y axis. This allows the integration to be restricted
to positive values of kx and ky, resulting in a factor 4 speedup.

cav.calc() also returns an object containing all the results, which can be queried in
exactly the same way as for the planar case.

Finally, cav.radiation_profile(horizontal_x, steps=30) calculates the TE and
TM polarised radiation profile for a single source orientation. This functions in exactly
the same way as in the planar case, e.g. it also supports the same optional arguments:
radiation_profile(source, steps=30, location=’out’, density=’per_solid_

angle’, show=True, filename=None). The return values of this function are similarly k,

P_TE, P_TM, where k is a 1D vector containing the k-values which are used both for kx and
ky. P_TE and P_TM are matrices.

There is also a function to create a square grating with round holes:
SquareGratingRoundHoles(D, dx, dy, core_m, surround_m, pos, thickness).
Here, dx and dy are the same discretisation parameters used for Geometry (See Section 2.6
[Defining complicated structures], page 34).

To show how you can manually create different unit cells which are not covered by the
convenience functions, we will now explain the code behind the SquareGrating at position
1. As shown in the following figure, the unit cell is built up from three vertical slices, which
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are represented in the following code by the Slabs s1, s2 and s1. These are then combined
in a BlochSection.

square

surround

x

y

s1 = Slab(square_m(D/2.) + surround_m(_Ly-D) + square_m(D/2.))

s2 = Slab(surround_m(_Ly))

grating = BlochSection(s1(D/2.) + s2(_Lx-D) + s1(D/2.))

To use this grating object in your stack definition, just do the following:

bot = Uniform(Alq3, 0.010) + \

Uniform(NPD, 0.045) + \

Uniform(ITO, 0.050) + \

grating(0.010) + \

Uniform(glass, 0.000)

In reality, the dipole position will be random with respect to the grating. The follow-
ing code illustrates a more elaborate example, where the emission is averaged over the
three high-symmetry dipole positions. Also, the structure is calculated for several grating
parameters.
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#!/usr/bin/env python

######################################################################

#

# Extraction efficiency in an organic LED with gratings

# averaged over dipole position.

#

######################################################################

from GARCLED import *

def calc(L, h, D, orders, wavelength=0.565):

# Set parameters.

set_period(L, L)

set_lambda(wavelength)

set_fourier_orders(orders, orders)

print

print "wavelength, orders L h:", wavelength, orders, L, h

# Create materials.

Al = Material(1.031-6.861j)

Alq3 = Material(1.655)

NPD = Material(1.807)

ITO = Material(1.806-0.012j)

SiO2 = Material(1.48)

SiN = Material(1.95)

glass = Material(1.528)

air = Material(1)

eta_sub, eta_out = [], []
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# Define layer structure.

for pos in [’1’, ’2’, ’3’]:

print

print "*** Position", pos, "***"

print

top = Uniform(Alq3, 0.050) + \

Uniform(Al, 0.150) + \

Uniform(air, 0.000)

bot = Uniform(Alq3, 0.010) + \

Uniform(NPD, 0.045) + \

Uniform(ITO, 0.050) + \

SquareGrating(D, SiO2, SiN, pos, h) + \

Uniform(glass, 0.000)

sub = Uniform(glass, 0.000) + \

Uniform(air, 0.000)

ref = Uniform(3) # Don’t choose too high: otherwise takes too long

cav = RCLED(top, bot, sub, ref)

# Calculate average over source orientation for a given position.

res = cav.calc(sources = [vertical, horizontal_x, horizontal_y],

steps=100, symmetric=True)

eta_sub.append(res.eta_sub)

eta_out.append(res.eta_out)

sys.stdout.flush()

free_tmps()
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# Print average over position and source.

print

print "*** Averaged over dipole position and source orientation ***"

print

print "Averaged extraction efficiency to substrate :", \

average(eta_sub)

print "Averaged extraction efficiency to bottom outside world :", \

average(eta_out)

# Loop over period and thickness of the grating.

for L in [.300, .500, .700]:

for h in [.100, .200, .400]:

calc(L, h, L/2, orders=3)

A grating close to the light emitting layer will have an influence on the extraction of the
light trapped inside the active layers. However, as the figure below illustrates, this grating
can also help to couple out light trapped inside the substrate, provided the lateral extent
of the device is sufficienly large.

Active

layers

Substrate

Air

Active

layers

Substrate
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These multipass effects in the substrate happen incoherently because of the large thick-
ness of the substrate. Normally, they are not taken into account, i.e. the substrate is
considered to be single-pass. You can calculate the multipass effects by specifying the
optional parameter single_pass_substrate=False to cav.calc().

Finally, instead of placing the grating at the cavity-substrate interface, you can place
it at the substrate-air interface by including a grating in the sub stack. In this case, the
grating will only have an influence on the substrate modes, and you need to specify single_

pass_substrate=False.
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2.11 CAMFR 3D

The following pages illustrate how to use CAMFR to find modes of waveguides with an
arbitrary 2D cross-section. These 2D waveguides can subsequently be stacked together in
Stack, BlochStack, or Cavity objects. Since this code is still in development, some of the
things mentioned here are subject to change.

The following code looks for the ground mode of a (quarter) of a square waveguide,
exploiting symmetry:

from camfr import *

set_lambda(1.0)

set_N(1)

core = Material(1.5)

clad = Material(1.0)

set_section_solver(L)

set_mode_correction(full)

set_left_wall(H_wall)

set_right_wall(H_wall)

set_right_PML(-0.05)

set_lower_wall(slab_E_wall)

set_upper_wall(slab_E_wall)

set_upper_PML(-0.05)

wg = Slab(core(0.25) + clad(1))

air = Slab(clad(wg.width()))

all = wg(0.25) + air(1)

s = Section(all, 10, 40)

s.calc()

print s

In order to explain all the options, some insight into the nature of the 3D model is
needed.

As a first step of the model, a coarse estimate of all the modes of a Section (a waveguide
with a 2D cross section) is created using a plane-wave model. In a second step, these
estimates (or a subset of them) are refined using an expansion based on modes of the 1D
waveguides making up the Section. Since these can better satisfy the boundary conditions,
more accurate results can be obtained.

The line s = Section(all, 10, 40) means we use (2*10+1)^2 plane waves in the first
stage, and refine it using 40 1D modes in each Slab during the second stage. all can be
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any 2D stack, including those fabricated with the Geometry function. Note: currently the
100 is a rough estimate: the software will print out how many modes were actually used.

The user has the option of choosing which modes get refined during the second stage:

• set_mode_correction(full): all modes.

• set_mode_correction(guided_only): only guided modes

• set_mode_correction(snap): don’t refine any modes, but set numerical noise on the
imaginary part of kz for guided modes to zero (obsolete)..

• set_mode_correction(none): don’t refine any modes (default).

When you’re only interested in the modes of a Section, and not putting Sections
together is a Stack, set_mode_correction(full) is the way to go, as it is more accurate.
For a full 3D model with different Sections however, such an approach can be very time-
consuming, especially in the calculation of the overlap integrals, which are much quicker in
a plane wave basis. In that case, it’s better to use guided_only or none. none is the fastest,
but can sometimes require a lot of plane waves to get accurate results. guided_only is a
hybrid approach, which is more accurate, but can sometimes miss a mode. When using
guided_only, it’s adviseable to use set_orthogonal(False) as well, as using a mixture of
two expansion sets somewhat distorts the mode orthogonality.

Some loose remarks:

• If you have estimates on the location of the modes, e.g. from a previous simulation
for a slightly different structure, you can skip stage 1 and use user-provided estimates
instead: s.set_estimate(n_eff1), s.set_estimate(n_eff2), ... .

• When you’re only interested in the fundamental mode, it’s tempting to use set_N(1).
However, sometimes this yields a higher-order mode, because the noise on the coarse
estimate during stage 1 can be such that the order of mode 0 and mode 1 gets swapped.
One option is to use more palne waves, but often it works just as well to increase the
value of set_N(). Taking more estimates to stage 2 will improve the chances of finding
all modes you are interested in.

Some interface quirks which are due to the development nature of the model and will
probably change in the final version :

• For left and right walls, the syntax is E_wall and H_wall, while for upper and lower
walls it’s slab_E_wall and slab_H_wall. For the left and right side, you can also use
no_wall, which is e.g. very accurately to study leakage losses provided you don’t use
PML.

• For the NT and Li solver, currently opposite walls have to be of the same type (i.e. no
electric wall on the left with a magnetic wall on the right).
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2.12 Low level field plotting

In you want more control over the field plotting than is provided by the plot widgets, you
can use a set of lower level plotting functions:

####################################################################

#

# Illustrates low level plotting.

#

####################################################################

from camfr import *

set_N(40)

set_lambda(1.55)

# Define materials.

GaAs = Material(3.5)

air = Material(1.0)

# Define geometry.

set_lower_PML(-0.1)

set_upper_PML(-0.1)

wg = Slab(air(2.0) + GaAs(0.2) + air(2.0))

gap = Slab(air(4.2))

s = Stack(wg(0) + gap(1) + wg(0))

inc = zeros(N())

inc[0] = 1

s.set_inc_field(inc)

s.calc()
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# Do some plotting.

r_x = arange( 1.5, 2.8, 0.05)

r_z = arange(-1.0, 2.0, 0.05)

print "Doing some plots. Close window to continue to the next one."

wg.plot_n(r_x)

wg.mode(0).plot_field(lambda f : f.E2().real, r_x)

s.plot_field(lambda f : f.E2().real, r_x, r_z)

s.animate_field(lambda f : f.E2(), r_x, r_z)

This code is pretty self-explanatory. Ranges are used to specify the area to be plotted
and the resolutions.

Note the use of Python’s lambda functions to indicate which field component to plot.
Lambda functions are little anonymous functions which in this case will be called on a
Field object. This greatly increases the flexibility of the plot_field function: e.g. to plot
the absolute value one would write lambda f : abs(f.E2()**2).

In all these plots, you can zoom by dragging a rectangle in the window. Also, left clicking
and dragging under the horizontal axis will print the corresponding coordinates. Note that
these functions are also very handy in interactive mode, to quickly inspect modes and their
field profiles.

Important to note is that animate_field requires a complex number to work correctly,
so the full complex field component needs to be used rather than e.g. the real part.

plot_n, plot_field and animate_field can take an additional named argument like
filename="out.gif" which indicates the filename to write the picture to. For pictures, a
variety of formats are supported (gif, jpg, png, eps, ...), where the suffix of the filename
will determine the format to be used. For animations only uncompressed animated gif is
supported.

Note that these plotting functions also work for BlochStack, BlochMode and Cavity.

For additional functionality of these functions, see the reference guide.
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2.13 Tips for troubleshooting problems

When CAMFR produces results that are clearly nonphysical, here are number of things you
can do to improve convergence:

• If CAMFR is missing modes, increase the precision with set_precision(p), where
p is an integer number that defaults to 100. If you expect missing radiation modes,
increase set_precision_rad() beyond the default of 100.

• Increase or decrease the absorption in the PML, the real distance between the metal
walls and the number of modes. Using too few modes will cause convergence problems.
A PML absorption that is too low will not damp out all parasitic reflections. On the
other hand, if the absorption is excessively high, some modes can be missed. Increasing
the real distance between the walls and lowering the PML absorption is a viable option
in this case, but also requires that you use more modes.

• If the PML absorption is high, try set_chunk_tracing(0) at the expense of longer
run times.

• If there are problems due to inverting numerically unstable matrices, you can change
the way these situations are handled. Use set_stability(extra) to use extra row
and column equilibration. With set_stability(SVD) a pseudo inverse is calculated
using singular value decomposition.

• If your waveguides don’t have multiple cores, try using set_degenerate(0).

• If the field profiles seem to be calculated incorrectly, try set_orthogonal(0). This
will cause CAMFR to treat modes which are not exactly orthogonal due to rounding
errors as non-orthogonal.

• If you are dealing with very lossy materials, using a different solver might help: set_

solver(series) and set_mode_surplus(n). This will first construct an initial esti-
mate of the modes based on a plane wave expansion. The number of plane waves used
in this expansion is n times get_N(). These estimates are subsequently refined using
the full dispersion relation.

• For trouble with uncoupled waveguides, try experimenting with set_unstable_exp_

threshold. E.g. setting it to 1e-6 will mean waveguides will be treated sooner as
decoupled than when the parameter was 1e-12.

• If you’re working with circular structures in the regime of backward and complex modes
(e.g. when the metal wall is close to the last interface), you can use set_backward_

modes(1) for extra stability.

If CAMFR crashes, make sure you haven’t called free_tmps() too soon, i.e. before
you’re done with the objects. Another common cause of crashes to look out for is defining a
wall or an InfStack inside an expression. Also, if you’re upgrading from a pre 1.0 version
of CAMFR, make sure all your coordinates are purely real.

Finally, we want to remind the user that in Python 1/3 = 0 rather than .3333. This
will change in Python 3.0, but if you already want such behaviour now, include from __

future__ import division at the top of your scripts.
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3 Reference guide

This chapter contains a listing all classes and functions contained in CAMFR.

set_lambda

set_lambda(Real): sets the wavelength.

See [get lambda], page 56.

get_lambda

get_lambda(): returns the wavelength.

Note: this is the only CAMFR function which uses a get_ suffix, as lambda is a reserved
Python keyword.

See [set lambda], page 56.

set_N

set_N(int): sets the number of modes used in the series expansion.

See [N], page 56.

N

N(): returns number of modes used in the series expansion.

See [set N], page 56.

set_polarisation

set_polarisation(Pol): sets the polarisation. Pol can be either TE (default) or TM. Only
relevant when the polarisations are indeed decoupled, i.e. for 2D Cartesian structures and
cylindrical ones with Bessel order 0. Ignored otherwise.

set_gain_material

set_gain_material(Material): sets the gain material, i.e. the material whose imaginary
part of its refractive index will be adjusted to find a lasing mode in a Cavity.

See [Cavity], page 63.

set_stability

set_stability(Stability): determines how to handle matrices that are close to singular
(rare case). Stability can be either

• normal: default, no special measures

• extra: uses row and column equilibration

• SVD: uses singular value decomposition to calculate a pseudo inverse
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set_precision

set_precision(int): sets the precision used when scanning for guided modes (defaults to
100, higher values have less chances of missing modes, but are slower).

See [set precision rad], page 57

set_precision_rad

set_precision_rad(int): sets the precision used when scanning for radiation modes (de-
faults to 100, higher values have less chances of missing modes, but are slower).

See [set precision], page 57.

set_sweep_from_previous

set_sweep_from_previous(bool): determines whether or not previously calculated eigen-
modes (e.g. for a slightly different wavelength) are used as a starting point for finding the
new modes. Can speed up the procedure, but is sometimes less stable. Note: a Python
bool is 1 for true, and 0 for false.

set_chunk_tracing

set_chunk_tracing(bool): determines whether or not all modes are located at the same
time or in chunks. Defaults to true, which is faster but can sometimes lose modes, especially
for high PML absorption. Note: a Python bool is 1 for true, and 0 for false.

set_degenerate

set_degenerate(bool): determines whether or not special precautions are taken to locate
degenerate modes. This is generally a good idea and therefore this option defaults to true,
but it can sometimes cause trouble. Note: a Python bool is 1 for true, and 0 for false.

set_orthogonal

set_orthogonal(bool): sometimes modes that should be orthogonal are not exactly or-
thogonal due to rounding errors. Setting this option to false will treat these modes as
non-orthogonal, and can sometimes drastically improve convergence. Note: a Python bool
is 1 for true, and 0 for false.

set_solver

set_solver(series): activates a different solver to calculate the modes in a slab. It will
first construct an estimate of the modes based on a plane wave expansion. These estimates
will subsequently be refined using the full dispersion relation. This is especially useful for
lossy structures. The number of plane waves used can be set through set_mode_surplus().
See [set mode surplus], page 57.

set_mode_surplus

set_mode_surplus(n): sets the number of plane waves used in the series expansion to
n*get_N(). Only affects the series solver for Slabs. See [set solver], page 57.
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set_unstable_exp_threshold

set_unstable_exp_threshold(eps): sets numerical parameter dealing with how soon
waveguides will be treated as uncoupled. Setting this parameter to 1e-6 will result in a
quicker decoupling as compared to e.g. 1e-12.

set_backward_modes

set_backward_modes(1): use this for extra stability if you’re working with circular struc-
tures in the regime of backward and complex modes (e.g. when the metal wall is close to
the last interface). Involves a performance penalty, so it is off be default.

set_circ_order

set_circ_order(int): set the order of the Bessel modes and the angular dependence in
cylindrical structures.

set_circ_field_type

set_circ_field_type(Fieldtype): determines which kind of angular field dependence is
used when calculating field due to a current source. Can be either cos_type (default) or
sin_type.

set_lower_PML

set_lower_PML(p): gives the lower cladding of all subsequently defined Slabs an imaginary
thickness of p*1j, with p usually negative for absorption. Implements PML boundary
conditions. The lower cladding is at x=0, at the first term in the expression to create a
Slab. By default, p is zero. Needs to be set BEFORE structures are defined.

See [set upper PML], page 58, [set circ PML], page 58.

set_upper_PML

set_upper_PML(p): gives the upper cladding of all subsequently defined Slabs an imaginary
thickness of p*1j, with p usually negative for absorption. Implements PML boundary
conditions. The upper cladding is at x=slab.width(), at the last term in the expression
to create a Slab. By default, p is zero. Needs to be set BEFORE structures are defined.

See [set lower PML], page 58, [set circ PML], page 58.

set_circ_PML

set_circ_PML(p): gives the cladding of all subsequently defined circular waveguides an
imaginary thickness of p*1j, with p usually negative for absorption. Implements PML
boundary conditions. By default, p is zero. Needs to be set BEFORE structures are
defined.

See [set lower PML], page 58, [set upper PML], page 58.
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set_lower_wall

set_lower_wall(SlabWall): sets the lower wall (i.e. at x=0) to the given wall. Has an
effect on all Slabs that are subsequently defined.

Note that walls can also be set on a slab-by-slab basis, with slab.set_lower_wall().

See [set upper wall], page 59.

set_upper_wall

set_upper_wall(SlabWall): sets the upper wall (i.e. at x = slab.width()) to the given
wall. Has an effect on all Slabs that are subsequently defined.

Note that walls can also be set on a slab-by-slab basis, with slab.set_upper_wall().

See [set lower wall], page 59.

free_tmps

free_tmps(): frees all the temporary scattering matrices that were calculated so far. Useful
at the end of an inner loop, in order to save memory.

Drawback is that when the same structures are needed in a subsequent loop iteration, they
have to be recalculated. Whether or not this is an issue depends on the actual simulation.

Coord

A three-dimensional coordinate.

Constructors:

• Coord(Complex c1,Complex c2,Complex z)

• Coord(Complex c1,Complex c2,Complex z, Limit c1_l, Limit c2_l, Limit z_l)

c1 and c2 stand for x and y in Cartesian coordinates, and for rho and phi in cylindrical
coordinates.

Optionally, Limit can be specified as either Plus or Min, e.g. to indicated on which side of
an index discontinuity the field has to be calculated.

Field

A data structure containing an electromagnetic field at a given location.

Member functions:

• E1(): first component (x in Cartesian, rho in cylindrical systems) of E field.

• E2(): second component (y in Cartesian, phi in cylindrical systems) of E field.

• Ez(): z component of E field.

• H1(): first component (x in Cartesian, rho in cylindrical systems) of H field.

• H2(): second component (y in Cartesian, phi in cylindrical systems) of H field.

• Hz(): z component of H field.

• S1(): first component (x in Cartesian, rho in cylindrical systems) of Poynting vector
E x H*.
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• S2(): second component (y in Cartesian, phi in cylindrical systems) of Poynting vector
E x H*.

• Sz(): z component of Poynting vector E x H*.

• abs_E(): magnitude of E field.

• abs_H(): magnitude of H field.

• abs_S(): magnitude of Poynting vector.

Material

An isotropic material.

Constructors:

• Material(Complex n)

• Material(Complex n, Complex mur)

Member functions:

• n(): returns refractive index.

• set_n(): sets refractive index.

• epsr(): returns relative permittivity.

• mur(): returns relative permeability.

• set_mur(): sets relative permeability.

• eps(): returns permittivity.

• mu(): returns permeability.

• gain(): returns material gain at current wavelength in 1/cm.

Waveguide

A general waveguide. Serves a base class for e.g. Slab or Circ.

Member functions:

• core(): returns core material

• eps(Coord): returns permittivity at a certain coordinate.

• mu(Coord): return permeability at a certain coordinate.

• n(Coord): return refractive index at a certain coordinate.

• N(): returns number of modes in this waveguide. Is the number set by set_N().

• mode(int i): returns Mode with index i. Zero is the fundamental mode.

• calc(): calculates the modes in this waveguide.

• plot(): interactively plots the modes in this waveguide.

• plot_n(r_x)): lower level routine to plot the refractive index. r_x is range
objects (e.g arange(x0, x1, dx)) specifying which interval to plot and with
which resolution. x is the transverse direction. An extra named argument
filename=’outputname.formatextension’ is supported. For pictures, a variety of
formats are supported (gif, jpg, png, bmp, eps, ps, tiff, pdf, xbm, dib), where the
suffix of the filename will determine the format to be used.
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• plot_field(component, r_x)): lower level field plot routine. component is a
function operating on a Field object specifying which field component to plot,
e.g. lambda f : f.E2().real. r_x is a range object (e.g arange(x0, x1, dx))
specifying which interval to plot and with which resolution. x is the transverse
direction. Note that the function also supports an additional named argument
filename=’outputname.formatextension’. For pictures, a variety of formats are
supported (gif, jpg, png, bmp, eps, ps, tiff, pdf, xbm, dib), where the suffix of the
filename will determine the format to be used. Other arguments are overlay_n

(defaults to true) which overlays the index profile on the field plot, and contour

(defaults to true) which uses contours to show the index profile rather than gray scale.

See [Slab], page 68, [Circ], page 68.

Mode

Member functions:

• kz(): returns propagation factor.

• n_eff(): returns effective index.

• pol(): returns polarisation.

• field(Coord): returns field at a given coordinate.

E_Wall

Constructor:

• E_Wall(Waveguide)

An electric wall with a Waveguide in front of it. Used a a boundary condition in the
z-direction, not to be confused with boundaries in the transverse direction.

Note: the default boundary condition in the z-direction is an open boundary.

See [H Wall], page 61.

H_Wall

Constructor:

• H_Wall(Waveguide)

An magnetic wall with a Waveguide in front of it. Used a a boundary condition in the
z-direction, not to be confused with boundaries in the transverse direction.

Note: the default boundary condition in the z-direction is an open boundary.

See [E Wall], page 61.

Expression

This class only has to be used explicitly when assembling expressions term-by-term:

e = Expression() creates an empty expression, and e.add(Term) adds a term to it.

See [Term], page 62.



Chapter 3: Reference guide 62

Term

Basic building block of expressions. Some examples of terms are

material(d)

waveguide(d)

2*expression

(expression)

See [Expression], page 61.

Stack

A stack of waveguides.

Constructor:

• Stack(Expression)

Member functions:

• calc(): calculates the scattering matrices of the stack.

• free(): frees the memory allocated for the scattering matrices.

• inc(): returns incidence waveguide.

• ext(): return exit waveguide.

• length(): returns length of the stack along the z-axis.

• width(): returns the c1-length of the stack.

• n(Coord): returns refraction index at a given coordinate.

• eps(Coord): returns permittivity at a given coordinate.

• mu(Coord): returns permeability at a given coordinate.

• R12(): returns reflection matrix for fields incident from the left (z=0).

• R12(i,j): returns element of the reflection matrix R12, index starting at zero. Be-
cause of the definition of this matrix, this is the reflection from mode j to mode i.
Similar functions exist for the transmission matrix T12, and for R21 and T21 describing
incidence from the right side. (z=stack.length())

• set_inc_field(vector): sets incident field from left side (z=0).

• set_inc_field(vector, vector): sets incident field from left and right side.

• set_inc_field_gaussian(A, sigma, x0, eps): set a gaussian incident field A*exp(-

0.5*((x-x0)/sigma)**2 and use precision eps to calculate the overlap integrals.

• set_inc_field_plane_wave(A, theta, eps): set a plane wave incident field with am-
plitude A, angle theta in radians, and use precision eps to calculate the overlap inte-
grals.

• set_inc_field_function(f, eps): set an incident field described by a function f

and use precision eps to calculate the overlap integrals. f describes the E2 for TE
polarisation and the H2 field for TM polarisation.

• plot_n(stack, r_x, r_z): lower level routine to plot the refractive index. r_x and
r_z are range objects (e.g arange(x0, x1, dx)) specifying which interval to plot and
with which resolution. x is the transverse direction, z the propagation direction. An
extra named argument filename=’outputname.formatextension’ is supported. For
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pictures, a variety of formats are supported (gif, jpg, png, bmp, eps, ps, tiff, pdf, xbm,
dib), where the suffix of the filename will determine the format to be used.

The following functions are only meaningful when an incident field has been set:

• plot(): interactively plots the fields in the stack.

• plot_field(component, r_x, r_z)): lower level field plotting routine. component

is a function operating on a Field object specifying which field component to plot,
e.g. lambda f : f.E2().real. r_x and r_z are range objects (e.g arange(x0, x1,

dx)) specifying which interval to plot and with which resolution. x is the transverse
direction, z the propagation direction. Note that the function also supports an addi-
tional named argument filename=’outputname.formatextension’. For pictures, a
variety of formats are supported (gif, jpg, png, bmp, eps, ps, tiff, pdf, xbm, dib), where
the suffix of the filename will determine the format to be used. Other arguments are
overlay_n (defaults to true) which overlays the index profile on the field plot, and
contour (defaults to true) which uses contours to show the index profile rather than
gray scale.

• animate_field(stack, component, r_x, r_z): animates the 2D field profile.
component is a function operating on a Field object specifying which (complex)
field component to plot, e.g. lambda f : f.E2(). r_x and r_z are range objects (e.g
arange(x0, x1, dx)) specifying which interval to plot and with which resolution. x

is the transverse direction, z the propagation direction. Note that the function also
supports an additional named argument filename=’outputname’, which writes the
animation to an uncompressed gif. Other arguments are overlay_n (defaults to true)
which overlays the index profile on the field plot, and contour (defaults to true)
which uses contours to show the index profile rather than gray scale.

• field(Coord): returns field at a given coordinate.

• inc_field(): returns incident field from left side.

• refl_field(): returns reflected field from left side.

• trans_field(): returns transmitted field to right side.

• fw_bw(z, limit=Min): returns a tuple with two vectors containing the forward and
backward field expansions at position z, limit. limit is optional and can be either
Min or Plus.

• inc_S_flux(Complex x0, Complex x1, Real eps): returns power flux in the
z-direction at z=0 between x0 and x1, calculated with relative precision eps.

• ext_S_flux(Complex x0, Complex x1, Real eps): returns power flux in the
z-direction at z=stack.length() between x0 and x1, calculated with relative
precision eps.

• lateral_S_flux(Complex x0): returns power flux in the x-direction at x=x0 be-
tween z=0 and z=stack.length().

Cavity

A cavity containing a cavity cut, dividing it into a top and a bottom stack. These stacks
are defined as seen from the cavity cut. A gain material has to be set with set_gain_

material(Material).

Constructor:
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• Cavity(Stack bottom, Stack top)

Member functions:

• find_mode(Real lambda0, Real lambda1, Real n_imag0=0, Real n_imag1=0.015,

int passes=1): finds a laser mode in a given wavelength and gain interval.
Wavelength and gain are optimised around the resonance for passes times. For
the gain interval, a default range is assumed for the imaginary part of the gain
index between 0 and 0.015. The parameters of the laser mode are printed out upon
completion, and the cavity field is automatically set to the lasing field.

• find_all_modes(lambda0, lambda1, deltalambda, n_imag0=0.0, n_imag1=0.015,

passes=1): similar to find_mode(), but prints out all laser modes found in this
range. Modes that are spaced closer than deltalambda will not be resolved.

• sigma(): returns the singular value of the cavity at the current wavelength and material
gain. (The singular value is minimised when looking for laser modes.)

• set_source(Coord pos, Coord orientation): places a dipole current source at the
cavity cut at a position pos and with a vectorial orientation given by orientation.

• set_source(forward, backward): places a source at the cavity cut described by the
expansion vectors forward and backward.

• field(Coord): returns field at given coordinate. Only meaningful if a laser mode has
been located, or if a source has been explicitly set.

• plot(): interactively plots the fields in the cavity. Only meaningful ifa laser mode has
been located, or if a source has been explicitly set.

• plot_n(): lower level routine to plot the refractive index. See Stack for more details.

• plot_field(): lower level field plot routine. See Stack for more details.

• animate_field(): lower level field plot routine. See Stack for more details.

• n(Coord): returns refractive index at given coordinate.

• bot_stack(): returns bottom stack.

• top_stack(): returns top stack.

• length(): returns the z-length of the cavity.

• width(): returns the c1-length of the cavity.

BlochStack

An infinite periodic repetition of a given Stack, supporting Bloch modes.

Constructor:

• BlochStack(Expression)

Member functions

• N(): returns number of modes in this waveguide. Is twice the number set by set_N(),
as it includes both forward and backward Bloch waves.

• mode(int i): returns BlochMode with index i. Index starts at zero.

• calc(): calculates the BlochModes in this waveguide.

• plot(): plots the BlochModes.

• plot_n(): lower level routine to plot the refractive index. See Stack for more details.
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• length(): returns the z-length of the basic period.

• width(): returns the c1-length of the basic period.

• beta_vector(): returns a vector containing all the propagation constants of the
BlochModes.

See [BlochMode], page 65.

BlochMode

Mode inside a BlochStack.

Member functions:

• kz(): returns propagation factor.

• n_eff(): returns effective index.

• pol(): returns polarisation.

• field(Coord): returns field at a given coordinate.

• fw_field(): returns expansion coefficients of forward field component of this mode.

• bw_field(): returns expansion coefficients of backward field component of this mode.

• fw_bw(z, limit=Min): returns a tuple with two vectors containing the forward and
backward field expansions at position z. limit is optional and can be either Min or
Plus.

• S_flux(Complex x0, Complex x1, Real eps): returns power flux in the z-direction at
z=0 between x0 and x1, calculated with relative precision eps.

• plot_field(): lower level field plot routine. See Stack for more details.

• animate_field(): lower level field plot routine. See Stack for more details.

See [BlochStack], page 64.

InfStack

An infinite periodic repetition of a given period, which can be used to terminate another
stack.

Constructor:

• InfStack(Expression)

Geometry

Creates an expression from a collection of geometric shapes.

Constructor:

• Geometry(Mat): creates a geometry with a given background material.

Member functions:

• += Shape: add a shape, which can be a Circle, Square. Rectangle, Triangle or a
Picture. In case of overlap, shapes that are added later take precedence. When using
Picture, only the last one added will be used.
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• to_expression(prop0,prop1,d_prop,trans0,trans1,d_trans): see the explana-
tion in See Section 2.6 [Defining complicated structures], page 34 for a description of
these arguments. When working with Picture, see See [Picture], page 67 for more
details.

See [Circle], page 66, See [Square], page 66, See [Rectangle], page 66, See [Triangle], page 66,
See [Picture], page 67.

Circle

A circle shape for use in a Geometry.

Constructor:

• Circle(Point(x,y), rad, Material): creates a circle with a given center, radius and
material.

See [Geometry], page 65

Square

A square shape for use in a Geometry.

Constructor:

• Square(Point(x,y), a, Material): creates a square with a given center, side and
material.

See [Geometry], page 65

Rectangle

A rectangular shape for use in a Geometry.

Constructor:

• Rectangle(Point(x,y), Point(x,y), Material): creates a rectangle with a given
bottom left and top right point and material.

See [Geometry], page 65

Triangle

A triangular shape for use in a Geometry.

Constructor:

• Triangle(Point(x,y), Point(x,y), Point(x,y), Material): creates a triangle out
of three vertices and a material.

See [Geometry], page 65
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Picture

A picture (in png, jpg, ... format) for use in a Geometry, to be converted to an expression.
It will not be combined with the other shapes in Geometry, and only the picture that is
added last to the Geometry will be used.

Constructor:

• Picture(picturename, n_min=x, n_max=y): creates a picture object from filename
picturename to be used in a Geometry.

The picture will be converted to grayscale, with white being mapped to a material with
refractive index n_min and black to n_max. The indices for grayscales are obtained through
linear interpolation.

When using the Geometry function

to_expression(prop0, prop1, d_prop, verbose=True,rescaling=’ANTIALIAS’),
the following will happen. The values of prop0 and prop1 will set the conversion from
pixel units to physical length units. The parameter d_prop determines the resolution:
when set to 0 (the default), no information is lost in the picture and every pixel is used as
is. In case the thickness of the slice d_prop is set to such a value that results in a coarser
picture than the original one, the following down-sample mechanisms can be used:

• NEAREST: ’Nearest’ algorithm from the PIL library. As this method takes the nearest
point, no new gray colours will be created.

• ANTIALIAS: ’Average’ algorithm from the PIL library. This will create a grayscale
image.

• INV_AVERAGE: Similar to ANTIALIAS, but use geometric averaging.

See [Geometry], page 65

Planar

A type of waveguide, that can be used e.g. to construct Stacks. Planar is an infinitely
stratified medium, and is different from other waveguides (like Slab and Circ) in the sense
that all modes (or propagation angles) are decoupled. Therefore, only one propagation
angle is considered at a time.

Constructor:

• Planar(Material)

Member functions: same as Waveguide, in addition to

• set_theta(Complex): set propagation angle in radians in this layer. This automat-
ically fixes the propagation angle in the other Planars because of Snell’s Law. Note
that you should set the wavelength before setting the angle, as set_theta effectively
sets the transverse part of the wavevector, which is dependent on the wavelength.

See [Waveguide], page 60.



Chapter 3: Reference guide 68

Circ

A type of waveguide, that can be used e.g. to construct Stacks, BlochStacks and Cavities.
Circ is an cylindrical waveguide bounded by a perfectly conducting metal wall. Currently,
at most on radial refractive index step is supported in the waveguide.

Constructor:

• Circ(Expression)

Member functions: same as Waveguide.

See [Waveguide], page 60.

Slab

A type of waveguide, that can be used e.g. to construct Stacks, BlochStacks and Cavities.
Slab is a 1D slab waveguide consisting of an arbitrary number of layers. Lateral boundary
conditions default to electric walls, but can be set at will on a slab-by-slab basis or globally.

Constructor:

• Slab(Expression)

Member functions: same as Waveguide in addition to

• width(): returns the width along x of the slab.

• set_lower_wall(SlabWall): sets the wall at x=0 for this slab. Possible choices for
SlabWall include slab_E_wall and slab_H_wall.

• set_upper_wall(SlabWall): sets the wall at x=slab.width() for this slab. Possible
choices for SlabWall include slab_E_wall and slab_H_wall.

See [Waveguide], page 60.
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